EVALUATION BLANCHE												
	Restituer connaissances					Réaliser			Analyser			
Objectifs à valider	Res 1	Res 2	Res 3	Res 4	Res 5	Rea 1	Rea 2	Rea 3	Ana 1	Ana 2	Ana 3	

SOLU	TION PAR DISSOLUTION					
On veut préparer 200 mL d'une solution aqueuse de chlorure de sodium de concentration 2,5×10-1 g/L Donnée: M(chlorure de sodium)=58,5 g/mol						
Donne	e. M(chiorare de soutain)=30,3 g/ moi	DEC 1				
1.	Préciser le solvant et le soluté de cette solution de perfusion.	RES 1				
2.	Donner la relation (formule) entre la concentration massique d'une solution, la masse de soluté et le volume de solution, ainsi que les unités.	RES 2				
3.	Donner la relation (formule) entre la concentration molaire d'une solution, la quantité de matière de soluté et le volume de solution, ainsi que les unités	RES 3				
4.	On veut préparer cette solution par dissolution. Calculer la masse de chlorure de sodium à utiliser	REA 2				
5.	Rédiger le protocole de préparation de cette solution.	REA 3				
6.	On dispose d'une solution aqueuse de chlorure de sodium de concentration 0,75 mol/ L , quelle est la quantité de matière de chlorure de sodium présente dans 300 mL de solution ?	2				

SOLII	TION PAR DILUTION	
BOLO		
	spose de 50mL de solution S_1 aqueuse de permanganate de potassium de concentration C_1 . On réparer 100mL de solution S_2 de concentration C_25 fois moins concentrée.	
1.	Exprimer le facteur de dilution en fonction de C_1 et C_2 .	RES 5
2.	En déduire le volume V_1 de solution S_1 à prélever pour préparer 100 mL de la solution S_2 .	ANA 2
3.	Préciser la verrerie qu'il devra utiliser pour réaliser cette dilution (vous préciserez le volume de cette verrerie)	RES 4

MASSE DE SOLUTE	
On souhaite préparer 400 mL de solution aqueuse de glucose de concentration 5,5×10-2 mol/L.	
Calculer la masse de glucose à utiliser.	ANA 1
Donnée : M(glucose)=180 g/mol	

EVALUATION BLANCHE												
		Restitue	er conna	issances	•		Réaliser			Analyser	•	Com (1)
Objectifs à valider	Res 1	Res 2	Res 3	Res 4	Res 5	Rea 1	Rea 2	Rea 3	Ana 1	Ana 2	Ana 3	

001	******		DIGGG	TITTIYON
SOI	LUTION	PAR	DISSOL	UTTON

On veut préparer 200 .nL d'une solution aqueuse de chlorure de sodium.

Donnée: M(chlorure de sodium)=58,5 g/mol

1. Préciser le solvant et le soluté de cette solution de perfusion.

Le solvant est l'eau, et le solité est le chlowre de sodium.

2. Donner la relation (formule) entre la concentration massique d'une solution, la masse de soluté et le volume de solution, ainsi que les unités.

C_m = m wec m musse de solute en (g), V volume de solution (L)

2. Donner la relation (formule) entre la concentration molaire d'une solution, la quantité de

RES₁

RES 2

RES 3

REA 2

REA₃

REA 2

matière de soluté et le volume de solution, ainsi que les unités

C = M avec n quantité de matière de solhé (mol), V volume de solition (2), C concentration molair (mol/L)

4. On veut préparer cette solution par dissolution. Calculer la masse de chlorure de sodium à

Gn doit donc di l'er 0050 g de chloure de sodium.

5. Rédiger le protocole de préparation de cette solution.

. Tarer la balance avec la compelle de pesée

- Poser 0,050 g de d'Rouire de sochum.

- Introduire dans une fisle jaugée de 200 m/L en ninçant la copelle de pesée avec de l'eau distillée.

- Ajorter de l'eau jusq-'au trait de jauge, Agiter.

6. On dispose d'une solution aqueuse de chlorure de sodium de concentration 0,25 mol/L, quelle

est la quantité de matière de chlorure de sodium présente dans 200 mL de solution?

 $G_n \ a \ C = \frac{m}{V} \ denc \ n = C \times V$

V=300 mL

A.N.: n = 0,75 × 300 × 10-3

n = 0,23 mol

(a quantité de chloure de sodium est de 0,23 mol. (2 chiffres significatifs)

SOLUTION PAR DILUTION

On dispose de 50 mL de solution S_1 aqueuse de permanganate de potassium de concentration C_1 . On veut préparer 100 mL de solution S_2 de concentration C_2 5 fois moins concentrée.

1. Exprimer le facteur de dilution en fonction de C_1 et C_2 .

$$F = \frac{C_1}{C_2} = 5$$

RES 5

2. En déduire le volume V_1 de solution S_1 à prélever pour préparer 100 mL de la solution S_2 .

Gra
$$F = \frac{C_1}{C_2} = \frac{V_2}{V_1} = 5$$
 et $V_2 = 100 \text{ mL}$
alors $V_4 = \frac{V_2}{5}$ soit $V_4 = \frac{100}{5} = 20 \text{ mL}$

ANA 2

On doil uhliser 20 ml de S..

3. Préciser la verrerie qu'il devra utiliser pour réaliser cette dilution (vous préciserez le volume de cette verrerie)

Il faudra utbrer une pipette jaugée pour faire le prélèrement du volenne V, et une fisle jaugée pour la solution Sz.

Pipette de 20 mL

fisle de 100 mL

RES

MASSE DE SOLUTE

On souhaite préparer 400 mL de solution aqueuse de glucose de concentration $5.5 \times 10-2$ mol/L.

Calculer la masse de glucose à utiliser.

ANA 1

Donnée : M(glucose)=180 g/mol

.
$$C = 5.5 \times 10^{-2} \text{ mell} L$$
 et $V = 400 \text{ mL}$
Avec $C = \frac{M}{2}$ on a $M = C \times V$

$$M = \frac{m}{17}$$
 donc on a $M = M \times 17$

En doit donc dilser 4,0 g de glucose.