EXERCICE 1: acide lactique ou acide 2-hydroxypropanoïque

1.

1

2. formule semi-développée de l'ion lactate : CH₃—CH—COO

0,5

3. Couple 1: $H_3O^+(aq) / H_2O(\ell)$ Couple 2 : $C_3H_6O_3(aq) / C_3H_5O_3(aq)$

1

 $K_{A} = \frac{\frac{[\Pi_{3} \circ (aq)]_{f}}{c^{0}} \cdot \frac{[C_{3}\Pi_{5} \circ C_{3}(aq)]_{f}}{c^{0}}}{\frac{[C_{3}H_{6} \circ O_{3}(aq)]_{f}}{c^{0}}}$

La concentration en soluté apportée est : $C = \frac{n(C_3H_6O_3)i}{V_1}$

D'après l'équation (ou tableau d'avancement) :

2,5

 $n(C_3H_5O_3)_f = x_f \text{ et } n(H_3O^+)_f = x_f \text{ donc } [H_3O^+(aq)]_f = [C_3H_5O_3]_f = [C$ $n(C_3H_6O_3)_f = n(C_3H_6O_3)_i - x_f \text{ donc } [C_2H_6O_3(aq)]_f = C - [H_3O^+(aq)]_f$

alors $K_A = \frac{\frac{[C \cdot I_3 \cup (aq)]_f}{(c^0)^2}}{\frac{[C - [H_3 O^+(aq)]_f}{(aq)]_f}}$ et finalement $K_A = \frac{[H_3O^+(aq)]_f^2}{(C - [H_2O^+(aq)]_s) c^0}$

 $[H_3O^+(aq)] = 10^{-pH}$ 5. $[H_3O^+(aq)] = 10^{-3,03} = 9,33 \times 10^{-4} \text{ mol.L}^{-1}$

6. Si l'acide lactique était un acide fort, on aurait $[H_3O^+(aq)] = C$, or $[H_3O^+(aq)] < C$. L'acide lactique n'est pas totalement dissocié dans l'eau, c'est un acide faible.

1

 $K_A = \frac{\left[H_3 O^+(aq)\right]_f^2}{\left(C - \left[H_3 O^+(aq)\right]_f\right).c^0}$ soit $K_A = \frac{\left(10^{-3,03}\right)^2}{8,00 \times 10^{-3} - 10^{-3,03}} = 1,23 \times 10^{-4}$ 7.

1

On sait que $pK_A = -\log K_A$ donc $pK_A = 3,90$

1,5 8.

EXERCICE 2: LE JEU DU CORNHOLE

	Éléments de réponses	Barème
1.1.	Grandeurs calculées :	
	- ligne 15 : v vitesse du sac	
	- ligne 16 : E _c Énergie cinétique	1
	- ligne 17 : E _{pp} Énergie potentielle de pesanteur	
	- ligne 18 : E _m Énergie mécanique	
1.2.1	Lorsque le sac est lancé, son altitude augmente donc E_{PP} augmente jusqu'à ce que le sac atteigne son altitude maximale. La courbe 3 représente E_{PP} .	
	En phase de montée, $V_Z(t)$ diminue donc $E_{\mathcal{C}}$ diminue. La courbe 2 représente $E_{\mathcal{C}}$.	1
	L'énergie mécanique étant égale à la somme de $E_{\mathcal{C}}$ et E_{PP} , la courbe 1 représente E_{m} .	
1.2.2	L'énergie mécanique diminue au cours du mouvement.	0,5
	On peut donc considérer que l'action de l'air n'est pas négligeable.	0,0
1.2.3	On lit à la date initiale (t = 0 s) la valeur de l'énergie : $E_{\it C}=17,8$ $\it J$. On acceptera une valeur cohérente de $E_{\it C}$ avec une lecture graphique. On calcule alors v_0 : $v_0=\sqrt{\frac{2E_{\it C}}{m}}=9,0~m.s^{-1}$	0,5
1.2.4	On lit à la date initiale (t = 0 s) la valeur de E_{PP} : $E_{PP} = 3.8 J$.	
	On acceptera une valeur cohérente de ${\it E}_{pp}$ avec une lecture graphique.	
	On calcule alors H : $H = \frac{E_{PP}}{mg} = 0.88 \text{ m}$	0,75
	Cette valeur est cohérente au vu de la taille du joueur.	
	Tout commentaire cohérent sera accepté.	

2.1		
2.1	Système : le sac	
	Référentiel : terrestre supposé galiléen	
	Champs : le champ de pesanteur $\vec{g}ig(\begin{matrix} g_x = 0 \\ g_z = -g \end{matrix} ig)$	
	Bilan des forces : poids du sac \vec{P}	
	Conditions initiales :	1,5
	$\overrightarrow{OG_0} \begin{pmatrix} x_0 = 0 \\ z_0 = H \end{pmatrix} \text{et} \overrightarrow{v_0} \begin{pmatrix} v_{0X} = v_0 \cdot \cos\alpha \\ v_{0Z} = v_0 \cdot \sin\alpha \end{pmatrix}$,-
	$2^{\text{ème}}$ loi de Newton : $\sum \overrightarrow{F_{ext}} = m \times \vec{a}$	
	Application de la loi : $m \times \vec{a} = m \times \overrightarrow{g} donc \ \vec{a} = \vec{g}$	
	Donc, le vecteur accélération \vec{a} pour coordonnées : $\vec{a} \begin{pmatrix} a_x = 0 \\ a_z = -g \end{pmatrix}$	
2.2	On sait que : $\vec{a}=\frac{d\vec{v}}{dt}$ et $\overrightarrow{v_0}\begin{pmatrix} v_{0X}=v_{0.}cos\alpha\\v_{0Z}=v_{0.}sin\alpha\end{pmatrix}$	
	Donc: $\overrightarrow{v(t)} \begin{pmatrix} v_X(t) = v_0.\cos\alpha \\ v_Z(t) = -g.t + v_0.\sin\alpha \end{pmatrix}$	
	On sait que : $\overrightarrow{v(t)} = \frac{d\overrightarrow{OG}}{dt}$ et $\overrightarrow{OG_0}$ $\begin{pmatrix} x_0 = 0 \\ z_0 = H \end{pmatrix}$	2,5
	Donc: $\overrightarrow{OG(t)}$ $\begin{pmatrix} x(t) = v_0.cos\alpha.t \\ z(t) = -\frac{1}{2}g.t^2 + v_0.sin\alpha.t + H \end{pmatrix}$	
2.3	λ partir do l'équation $x(t) = x$, coss t on exprime ten fonction de $x : t = x$	
	À partir de l'équation $x(t) = v_0 . cos \alpha . t$ on exprime t en fonction de $x : t = \frac{x}{v_0 . cos \alpha}$	
	On remplace t par son expression en fonction de x dans l'équation :	
	$z(t) = -\frac{1}{2}g.t^{2} + v_{0}.\sin\alpha .t + H$	0,75
	On obtient l'équation de la trajectoire : $z(x) = -\frac{1}{2}g\frac{x^2}{v_0^2\cos^2\alpha} + x \times \tan\alpha + H$	
	La trajectoire est une parabole.	
2.4	Les paramètres de lancement qui jouent un rôle dans le mouvement du sac sont v_0 , α et H .	0,5
2.5	On cherche l'abscisse x _P positive à laquelle le sac tombe en résolvant	
	$-0.0842 x^2 + 0.625 x + 0.880 = 0$	
	On obtient : $x_P = 8.6 \text{ m}$.	1
	Le sac atteint donc la planche mais pas le trou car 8,0 m < x_P < 8,91 m, le joueur marque 1 point.	
	L	